

US009287144B2

(12) United States Patent

Kondo et al.

(10) Patent No.: US 9,287,144 B2 (45) Date of Patent: Mar. 15, 2016

(54) HEATING DEVICE

(71) Applicant: NGK INSULATORS, LTD., Nagoya

(JP)

(72) Inventors: **Nobuyuki Kondo**, Taketoyo (JP);

Morimichi Watanabe, Nagoya (JP); Asumi Jindo, Okazaki (JP); Yuji Katsuda, Tsushima (JP); Yosuke Sato, Hashima-County (JP); Yoshinori Isoda,

Nagoya (JP)

(73) Assignee: NGK Insulators, Ltd., Nagoya (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 347 days.

(21) Appl. No.: 13/863,803

(22) Filed: **Apr. 16, 2013**

(65) **Prior Publication Data**

US 2013/0228565 A1 Sep. 5, 2013

Related U.S. Application Data

(63) Continuation of application No. PCT/JP2011/073767, filed on Oct. 11, 2011.

(30) Foreign Application Priority Data

Oct. 25, 2010	(JP)	2010-239000
Jun. 17, 2011	(JP)	2011-135312
Aug. 29, 2011	(WO) PC	T/JP2011/069479

(51) **Int. Cl. H05B 3/02** (2006.01) **H01L 21/67** (2006.01)

(Continued)

(52) U.S. Cl.

(Continued)

(58) Field of Classification Search

CPC C04B 2237/08; C04B 2237/34; C04B 2237/343; C04B 2237/36; C04B 2237/366; C04B 2237/58; C04B 2237/704; C04B

2237/708; C04B 2237/72; C04B 35/581; C04B 35/6261; C04B 35/62655; C04B 35/645; C04B 35/58; C04B 37/001; C04B 37/003; C04B 2235/3217; C04B 2235/322; C04B 2235/3225; C04B 2235/3065; C04B 2235/5495; C04B 2235/77; C04B 2235/80; C04B 2235/96; C04B 2235/9607; C04B 2235/3206; H05B 3/283; H05B 1/00; B32B

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

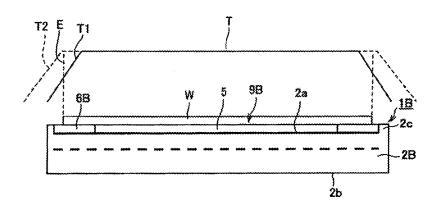
3,531,245 A 5,231,062 A 9/1970 Dietz 7/1993 Mathers et al. (Continued)

FOREIGN PATENT DOCUMENTS

JP 62-028917 A1 2/1987 JP 04-304359 A1 10/1992 (Continued)

OTHER PUBLICATIONS

J. Weiss, et al, "The System Al_Mg—O—N>" Communication of the American Ceramic Society, vol. 65, May 1982, C68-C69.*


(Continued)

Primary Examiner — Shawntina Fuqua (74) Attorney, Agent, or Firm — Burr & Brown, PLLC

(57) ABSTRACT

A heating apparatus 1A includes a susceptor part 9A having a heating face 9a of heating a semiconductor W, and a ring shaped part 6A provided in the outside of the heating face 9a. The ring shaped part 6A is composed of a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ =47 to 50° taken by using CuK α ray.

18 Claims, 9 Drawing Sheets (1 of 9 Drawing Sheet(s) Filed in Color)

(51)	Int. Cl.	
	C04B 35/581	(2006.01)
	H05B 1/00	(2006.01)
	B32B 18/00	(2006.01)
	H05B 3/28	(2006.01)
	H01L 21/683	(2006.01)
	C04B 35/58	(2006.01)
	C04B 35/626	(2006.01)
	C04B 35/645	(2006.01)
	C04B 37/00	(2006.01)
	C23C 14/34	(2006.01)
(52)	U.S. Cl.	
` /	CPC C04B 35/6	261 (2013.01); C04B 35/62655
		C04B 35/645 (2013.01); C04B
		3.01); <i>C04B 37/003</i> (2013.01);
		3414 (2013.01); H01L 21/6831
		5B 1/00 (2013.01); H05B 3/283
	(2013.01); CO-	4B 2235/3206 (2013.01); C04B
		17 (2013.01); C04B 2235/3222
	(2013.01); CO-	4B 2235/3225 (2013.01); C04B
	2235/38	65 (2013.01); C04B 2235/5445
	(2013.01); (C04B 2235/77 (2013.01); C04B
	2235/80 (2013	5.01); C04B 2235/96 (2013.01);
	C04B 2235/	9607 (2013.01); C04B 2237/08
	(2013.01); (C04B 2237/34 (2013.01); C04B
		5.01); <i>C04B 2237/36</i> (2013.01);
		7/366 (2013.01); C04B 2237/58
	(2013.01); Co	04B 2237/704 (2013.01); C04B
	2237/708 (2013	5.01); <i>C04B 2237/72</i> (2013.01);

(56) References Cited

U.S. PATENT DOCUMENTS

Y10T 428/24942 (2015.01)

5,314,675 A	5/1994	Dubots et al.
5,336,280 A	8/1994	Dubots et al.
5,457,075 A	10/1995	Fukushima et al.
5,721,062 A	2/1998	Kobayashi
6,071,465 A	6/2000	Kobayashi
6,239,402 B1*	5/2001	Araki et al 219/121.4
6,447,937 B1	9/2002	Murakawa et al.
7,255,934 B2	8/2007	Hatono et al.
2003/0049499 A1	3/2003	Murakawa et al.
2003/0128483 A1	7/2003	Kamijo
2003/0183615 A1	10/2003	Yamaguchi et al.
2005/0173412 A1*	8/2005	Kondou et al 219/544

2006/0240972 A1	10/2006	Lee et al.
2007/0258281 A1	11/2007	Ito et al.
2008/0124454 A1	5/2008	Djayaprawira et al.
2010/0104892 A1	4/2010	Kobayashi et al.
2010/0213171 A1	8/2010	Koshimizu et al.
2011/0116207 A1	5/2011	Sato et al.

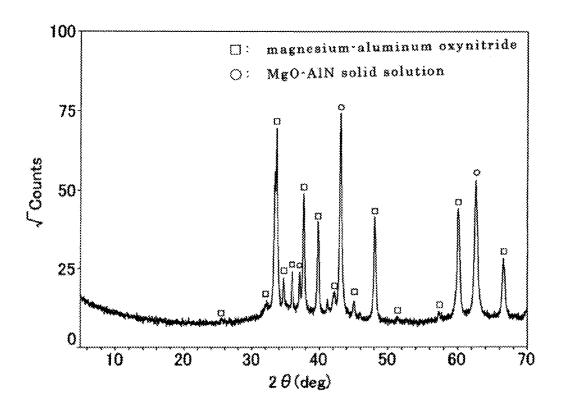
FOREIGN PATENT DOCUMENTS

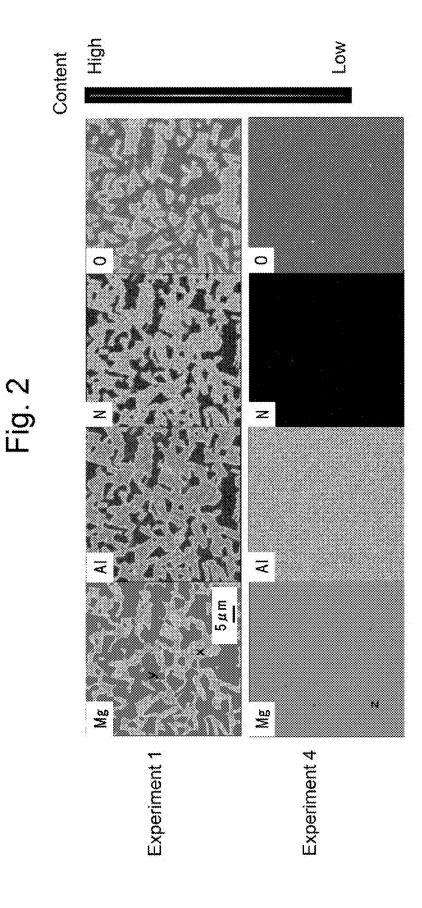
IΡ	05-319937 A1	12/1993
P	06-037207 A1	2/1994
P	08-073280 A1	3/1996
P	09-219369 A1	8/1997
P	2000-044345 A1	2/2000
P	2003-288975 A1	10/2003
P	3559426 B2	9/2004
P	2004-311837 A1	11/2004
P	2005-203456 A1	7/2005
P	2006-080116 A1	3/2006
P	2007-084367 A1	4/2007
P	2007-300079 A1	11/2007
P	2008-115065 A1	5/2008
P	2009-292688 A1	12/2009
P	2011-071464 A1	4/2011
P	2011-108816 A1	6/2011

OTHER PUBLICATIONS

Arielle Granon, et al., "Aluminum Magnesium Oxynitride: A New Transparent Spinel Ceramic," Journal of the European Ceramic Society, vol. 15, 1995, pp. 249-254.

J. Weiss, et al., "The System Al—Mg—O—N," Communications of the American Ceramic Society, vol. 65, May 1982, C68-C69. Guotian Ye, et al., "Synthesis and Oxidation Behavior of MgAlON Prepared from Different Starting Materials," J. Am. Ceram. Soc., vol. 93, No. 2, 2010, pp. 322-325.


International Search Report and Written Opinion dated Nov. 22, 2011.


U.S. Appl. No. 13/863,729, filed Apr. 16, 2013, Kondo et al. U.S. Appl. No. 13/864,467, filed Apr. 17, 2013, Aikawa et al. U.S. Appl. No. 13/864,559, filed Apr. 17, 2013, Kondo et al. U.S. Appl. No. 13/869,285, filed Apr. 24, 2013, Aikawa et al. U.S. Appl. No. 13/478,508, filed May 23, 2012, Watanabe et al. U.S. Appl. No. 13/478,591, filed May 23, 2012, Watanabe et al. "Refractory Products," published by Chemical Industry Publisher, dated Jan. 31, 2010 (3 pages).

Chinese Office Action (With English Translation), Chinese Application No. 201180051175.X, dated Mar. 9, 2015 (15 pages).

^{*} cited by examiner

Fig. 1

x: magnesium-aluminum oxynitridey: MgO-AlN solid solutionz: spinel material

Mar. 15, 2016

Fig. 3

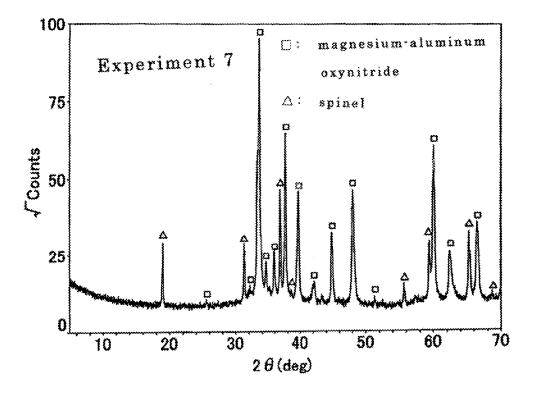


Fig. 4

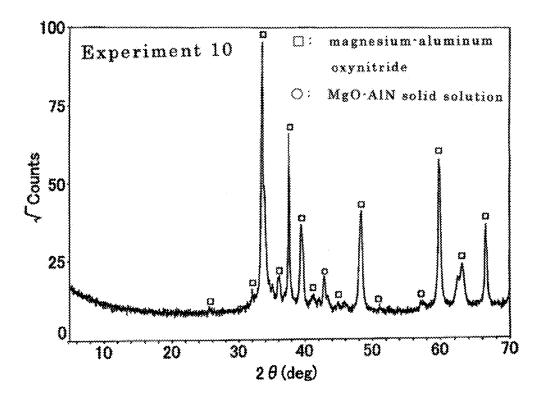


Fig. 5

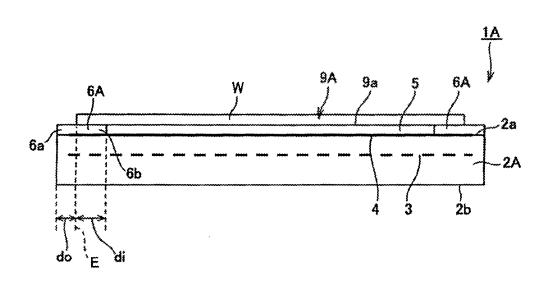


Fig. 6

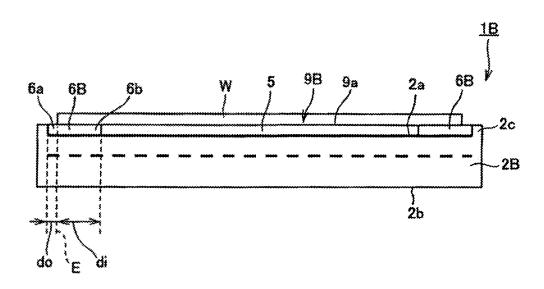


Fig. 7

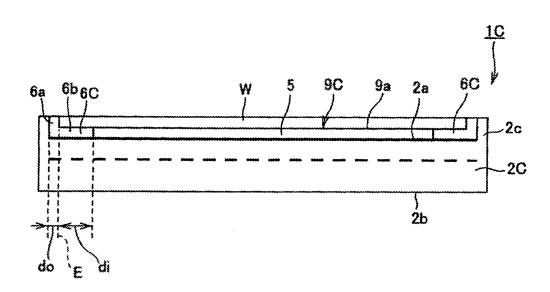


Fig. 8

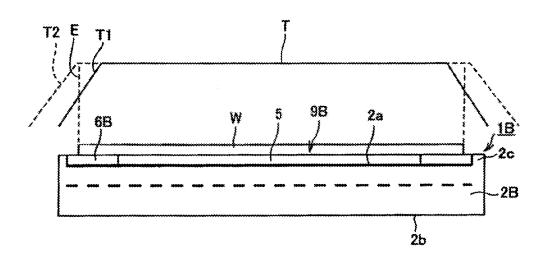



Fig. 9

HEATING DEVICE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an apparatus of heating conductors.

2. Description of Related Art

In a system of producing semiconductors used for dry process or plasma coating in semiconductor production, it has been used halogen-based plasma such as F, Cl or the like having high reactivity for etching or cleaning. It is thus required, for a member equipped to such semiconductor production system, high corrosion resistance, so that it has been 15 generally used a member of an anti-corrosive metal such as aluminum with alumite treatment, HASTELLOY or the like or a ceramic material. Especially, it is necessary high corrosion resistance and low particle generation properties for an electrostatic chuck or heater member supporting and fixing an 20 Si wafer, so that it has been used a high corrosion resistant ceramic member such as aluminum nitride, alumina, sapphire or the like. As these materials are used for a long time, they are gradually corroded to induce particle generation, so that it has been demanded a material whose corrosion resistance is fur- 25 ther improved. For attending such demands, it is studied to use, as the material, magnesia, spinel (MgAl₂O₄) or a composite material thereof whose corrosion resistance is higher than that of alumina (For example, Patent document 1; U.S. Pat. No. 3,559,426B).

It is further known a ceramic heater used for heating wafers. In such ceramic heaters, temperature uniformity of the heater is required for heating the wafer uniformly. For example, according to the disclosure of Patent Document 2 (Patent Publication H08-073280A), a heat resistance is 35 embedded in an aluminum nitride based ceramic plate to which an aluminum nitride based shaft is bonded to provide a ceramic heater. According to the descriptions of Patent document 3 (Patent Publication No. 2003-288975A), in a ceramic heater with a shaft, a content of metal carbide in a heat 40 resistance is lowered to reduce the deviation of the carbide content in the heat resistance depending on the positions, so that the temperature distribution on its heating face is reduced.

In the case that a semiconductor wafer is mounted on a 45 susceptor to form a film, it is required uniformity of film thickness particularly in an outer peripheral portion of the semiconductor wafer. As a member for supporting and further heating an Si wafer in a system for producing semiconductors, it has been widely used a ceramic heater made of AlN 50 (aluminum nitride) as described above as an existing art.

Further, as a plasma etching apparatus, for example, it is known the following: it is set, in a chamber for vacuum treatment, a lower electrode functioning as a mounting table for mounting a substrate and an upper electrode provided so 55 as to oppose the lower electrode, and radio frequency power is supplied to the lower electrode to generate plasma of a treating gas. Further, in the plasma etching apparatus of such construction, it is disclosed a construction of providing a focus ring surrounding an outer periphery of the substrate on 60 the lower electrode for improving uniformity in a plane of treatment of the substrate (Patent document 4, Japanese Patent Publication No. 2011-071464A: Patent document 5, Japanese Patent Publication No. 2011-108816A: Patent document 6, Japanese Patent Publication No. 2004-311837A). It is further known that an induction heat generator is provided inside of the focus ring and that the focus ring

2

is heated by induction heating by magnetic field generated by an induction coil provided in a vacuum treatment chamber.

SUMMARY OF THE INVENTION

According to the technique described above, however, the film thickness in an outer peripheral portion of the semiconductor wafer tends to be uneven. Further, the surface of the susceptor of AlN is corroded due to the cleaning by corrosive gas and the shape and roughness of the heater surface is changed, so that an amount of film formation in the outer peripheral portion of the wafer is changed and uniformity of film thickness cannot be maintained as the use time is passed by. Similar problems arise in the case of a focus ring.

An object of the present invention is in a ceramic heating apparatus used for film formation of a semiconductor, to improve uniformity of film formation in an outer peripheral portion of a wafer and to maintain uniformity of film formation in the outer peripheral portion of the semiconductor for a long period of time even in the case that it is used under a halogen based corrosive gas or its plasma atmosphere.

The present invention provides a heating apparatus comprising a susceptor part having a heating face of heating a semiconductor and a ring shaped part provided in outer periphery of the heating face. The ring shaped part is composed of a ceramic material comprising main components comprising magnesium, aluminum, oxygen and nitrogen, and the ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ =47 to 50° taken by using CuK α ray.

The present invention provides a ring shaped part mounted on a susceptor having a heating face of heating a semiconductor. The ring shaped part is composed of a ceramic material comprising main components comprising magnesium, aluminum, oxygen and nitrogen, and the ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ =47 to 50° taken by using CuK α ray.

According to the present invention, by providing the ring shaped part made of the ceramic material, it is possible to stabilize state of plasma generation in a periphery of a semiconductor and its surrounding portion so that uniformity of film formation can be improved. At the same time, the ceramic material includes the magnesium-aluminum oxynitride phase as its main phase, and superior in corrosion resistance against a strongly corrosive gas such as a halogen based gas or the like compared with aluminum nitride. By forming the ring shaped part of the susceptor with the ceramic material, the surface state due to the corrosion can be reduced even in the case that it is used for a long time period under corrosive circumstance, so that it is possible to realize uniformity of film formation in the outer peripheral portion of the semiconductor for a long period, of time.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

FIG. $\hat{\mathbf{1}}$ is an XRD analytical chart obtained in Experiment

FIG. 2 is EPMA element mapping images obtained in 65 Examples 1 and 4.

FIG. 3 is an XRD analytical chart obtained in Experiment

FIG. 4 is an XRD analytical chart obtained in Experiment

FIG. 5 is a diagram schematic showing a heating apparatus 1A according to the present invention.

FIG. 6 is a diagram schematic showing a heating apparatus 5 1B according to the present invention.

FIG. 7 is a diagram schematic showing a heating apparatus 1C according to the present invention.

FIG. 8 is a view showing state of plasma on the heating apparatus 1B according to the embodiment of the present 10 invention.

FIG. 9 is a diagram schematic showing a heating apparatus 11 of a reference example.

DETAILED DESCRIPTION OF THE INVENTION

The novel ceramic material used in the present invention will be described first, and details of the heating apparatus will be described later.

(Ceramic Material)

The inventors intensively studied corrosion resistance of a ceramic material produced by molding a mixture of magnesium oxide, alumina and aluminum nitride powders and by sintering the mold by hot press sintering. As a result, it was found that considerably high corrosion resistance can be 25 obtained by the ceramic material including a main phase composed of magnesium-aluminum oxynitride having an XRD peak at a specific position.

That is, the inventive ceramic material comprises main components comprising magnesium, aluminum, oxygen and 30 nitrogen, and the ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ=47 to 50° taken by using CuKα ray.

The ceramic material of the present invention has corrosion 35 resistance comparable with, or superior than, that of spinel. Therefore, the inventive susceptor can endure against halogen based plasma such as F, Cl or the like used in a semiconductor production process for a long time, so that it is possible to reduce an amount of particles generated from the susceptor 40 member. Moreover, even when the susceptor is used for a long time under corrosive condition, the change of the surface state due to corrosion can be reduced, so that it is possible to obtain good temperature uniformity on a wafer for a long time.

The inventive ceramic material includes main components 45 including magnesium, aluminum oxygen and nitrogen, and the ceramic material includes a main phase comprising the magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ =47 to 50° taken by using CuK α ray. As the magnesium-aluminum oxynitride has corrosion resistance 50 against halogen based plasma comparable with, or superior than, that of spinel, it is considered that the inventive ceramic material including the oxynitride as its main phase also exhibits high corrosion resistance. Further, the magnesium-aluminum oxynitride has corrosion resistance comparable with that 55 thermal expansion coefficient of the magnesium-aluminum of spinel, and at the same time, can have a linear thermal expansion coefficient lower than that of spinel.

The inventive ceramic material may contain, as a sub phase, crystal phase of MgO—AlN solid solution composed of magnesium oxide to which aluminum nitride is dissolved. 60 The MgO—AlN solid solution is also anti-corrosive, so that it is not problematic if it is contained as a sub phase. The XRD peaks at (200) and (220) faces of the MgO—AlN solid solution taken by using CuKα ray may be observed in ranges of 2θ=42.9 to 44.8° and 62.3 to 65.2°, respectively, which are 65 between peaks of cubic phase of magnesium oxide and cubic phase of aluminum nitride, respectively. Further, XRD peak

at (111) face may be observed in a range of $2\theta=36.9$ to 39° , which is between peaks of cubic phase of magnesium oxide and cubic phase of aluminum nitride. Since it may be difficult to distinguish the peak at (111) face from the peaks corresponding with the other crystalline phases, only the XRD peaks at (200) face and (220) face may be observed in the above ranges. Similarly, it may be difficult to distinguish the peak at (200) face or the peak at (220) face from the peaks corresponding with the other crystalline phases.

In the inventive ceramic material, for obtaining corrosion resistance comparable with, or higher than, that of spinel, the content of AlN crystal phase may preferably be lower and more preferably AlN crystal phase is not contained, because the corrosion resistance tends to be deteriorated in the case 15 that AlN crystal phase is contained as the sub phase. Further, since the corrosion resistance of spinal is higher than those of alumina and AlN crystals, a small amount of spinal may be contained. However, since the corrosion resistance of spinal is inferior to that of the inventive magnesium-aluminum 20 oxynitride phase or MgO—AlN solid solution, it is preferred that the content of spinal is lower. On the other hand, for lowering the linear thermal expansion coefficient while maintaining the corrosion resistance comparable with that of spinel, a small amount of spinal or AlN crystal phase may be contained.

In the inventive ceramic material, for obtaining corrosion resistance comparable with or higher than, that of spinel, a molar ratio of magnesium/aluminum in powdery raw material may preferably be 0.20 or higher and 2 or lower, and more preferably be 0.75 or higher and 2 or lower. In the case that the molar ratio of magnesium/aluminum is lower than 0.20, it might be concerned that an amount of generation of either of aluminum nitride, spinel and aluminum nitride would become large to result in reduction of the superior anti-corrosion characteristics. In the case that the molar ratio of magnesium/aluminum exceeds 2 the MgO—AlN solid solution tends to become a main phase. On the other hand, for lowering the linear thermal expansion coefficient while maintaining the corrosion resistance comparable with that of spinel, the molar ratio of magnesium/aluminum in the powdery raw material may preferably be 0.05 or higher and 1.5 or lower, and more preferably be 0.1 or higher and 1 or lower.

An open porosity of the inventive ceramic material may preferably be 5% or lower. Here, the open porosity means a value measured by Archimedean method using pure water as an medium. In the case that the open porosity exceeds 5%, there would be a risk that the strength is lowered or the material itself would become susceptible to removal of grains and the resultant particle generation, and particle components tends to be stored in the pores during the processing of the material, which is not preferred. Further, it is preferred that the open porosity is nearer to zero as possible. The lower limit of it is not particularly defined.

According to the inventive ceramic material, the linear oxynitride forming the main phase in a range of 40 to 1000° C., is 6 to 7 ppm/K. Thus, by changing the ratios of the sub-components such as the MgO—AlN solid solution (12 to 14 ppm/K), spinel (8 to 9 ppm/K), and aluminum nitride (5 to 6 ppm/K), the linear thermal expansion coefficient can be controlled in a range of 5.5 to 10 ppm/K while maintaining the high corrosion resistance. However, since spinel or aluminum nitride is lower in the corrosion resistance than the magnesium-aluminum oxynitride or MgO—AlN solid solution, the contents thereof may be preferably smaller. By adjusting the thermal expansion as such, it is possible to match the thermal expansion with those of aluminum oxide,

yttrium oxide and aluminum nitride used for members for semiconductor production systems. Alternatively, the difference of the thermal expansion coefficients can be reduced. By these, it is possible to laminate or adhere the inventive ceramic material onto a prior material. It is thereby possible to 5 use the inventive ceramic material with high corrosion resistance for a surface part (first structural body) and to use the prior material as a base material for a lower part (second structural body). Such layered structure and the adjustment of thermal expansion are particularly effective especially in the co-sintering process. Among them, by using a material mainly composed of aluminum nitride as the base material of the second structural body, it becomes easier to maintain a high thermal conductivity and to maintain the surface temperature uniformity of the ceramic material with high corrosion resistance. Such construction is especially effective in a system of producing semiconductors of so-called heater embedded type.

The inventive ceramic material may be used for a laminated body having a first structural body utilizing the ceramic 20 material and a second structural body including, as its main phase, at least one of aluminum nitride, yttrium oxide and aluminum oxide. Further, it may have a structure in which the first and second structural bodies are laminated or bonded with each other. By applying the first structural body with 25 high corrosion resistance and the second structural body with the other property (for example heat transmission or mechanical strength), it is thereby possible to further improve the corrosion resistance as well as the other properties. Here, the first structural body may be a thin film, plate body or 30 laminated body formed with the ceramic materials. Further, the second structural body may be composed of a thin film, plate-shaped body or laminated, body having aluminum nitride, yttrium oxide and aluminum oxide as its main phase. Besides, the bonding may be made according to any embodi- 35 ceramic material described above. ment, and for example may be bonded by sintering or an adhesive agent, for example.

At this time, the first and second structural bodies may be bonded with each other through an intermediate layer. By the peeling of the first and second structural bodies due to, for example difference of thermal expansion coefficients. The intermediate layer may be a layer having properties between those of the first and second structural bodies. The intermediate layer may be, for example, a layer of mixing the main 45 phases of the first and second structural bodies. Further, the intermediate layer may include a plurality of layers having different components or ratios of components. It is thereby possible to provide properties of a functionally graded material.

Further, a difference of linear thermal expansion coefficients of the first and second structural bodies may be 0.3 ppm or smaller, and the first and second structural bodies may be directly bonded with each other. Since the difference of the linear thermal expansion coefficients of the first and second 55 structural bodies is made thus small, it is possible to avoid the risk of cracks or peeling, in the case that both structural bodies are bonded with each other at a high temperature (for example bonded by sintering) or the laminated body is repeatedly used at high and low temperatures.

(Production of Ceramic Material)

The inventive ceramic material can be produced by molding powdery mixture of magnesium oxide, alumina and aluminum nitride and then by sintering. For example, for obtaining high corrosion resistance comparable with, or higher 65 than, that of spinel, 15 mass percent or more and 66.2 mass percent or less of magnesium oxide, 63 mass percent or less of

alumina and 57.7 mass percent or less of aluminum nitride may be mixed to obtain powdery mixture, which may be molded and then sintered. Further, 37 mass percent or more and 66.2 mass percent or less of magnesium oxide, 63 mass percent or less of alumina and 57.7 mass percent or less of aluminum nitride may be mixed to obtain powdery mixture, which may be molded and then sintered. On the other hand, for lowering the linear thermal expansion coefficient to improve temperature uniformity while maintaining the corrosion resistance comparable with that of spinel, 5 mass percent or more and 60 mass percent or less of magnesium oxide, 60 mass percent or less of alumina and 90 mass percent or less of aluminum nitride may be mixed to obtain powdery mixture, which may be molded and then sintered. Further, the sintering temperature may preferably be 1750° C. or higher. In the case that the sintering temperature is lower than 1750° C., it would be a risk that the targeted magnesium-aluminum oxynitride would not be generated, which is not preferred. Besides, although the upper limit of the sintering temperature is not particularly limited, it may be 1850° C., or 1900° C., for example. Further, hot press sintering may be preferably applied for the sintering, and a pressure during the hot press sintering may preferably be set in a range of 50 to 300 kgf/ cm². Atmosphere during the sintering may preferably be that which does not affect the sintering of the oxide raw material, and may preferably be an inert atmosphere such as nitrogen, argon, helium atmosphere or the like. The pressure for the molding is not particularly limited and may be adjusted at any pressure as far as it is possible to maintain the shape. (Heating Apparatus)

The heating apparatus of the present invention includes a susceptor part having a heating face of heating a semiconductor and a ring shaped part provided in an outer periphery of the heating face, and the ring shaped part is composed of the

The invention will be described below appropriately referring to the figures.

FIGS. 5 to 8 relate to embodiments of the present invention. A heating apparatus 1A of FIG. 5 includes a susceptor part intermediate layer, it is thereby possible to further prevent the 40 9A and a ring shaped part 6A. A substrate 2A of the susceptor 9A is plate shaped and a dielectric material layer 5 is formed on an upper face 2a of the substrate 2A. According to the present example, the upper face of the dielectric layers forms a heating face 9a of heating a semiconductor. The heating face 9a is not necessarily flat, and the heating face may be roughened, or it may be formed a groove having a size comparable with that of the substrate or a groove for flowing purge gas.

> A supporting part not shown may be bonded to a lower face (back face) 2b of the susceptor. The supporting part is tube shaped, for example, and a member for supplying electricity is contained inside of the supporting part. The member for supplying electricity is connected to a heating member 3 embedded within the substrate 2A of the susceptor.

> The susceptor part 9A is plate shaped and preferably, substantially circular disk shaped. Although the size of the susceptor is not particularly limited, the diameter is 280 to 380 mm and thickness is 8 to 20 mm, for example.

Here, although the heating member 3 may preferably be embedded within the susceptor part 9A, the heating member 60 may be fitted to the susceptor part. Alternatively, the heating member may be an outer heating member, such as an infrared ray heating device, fitted at a position distant from the susceptor part.

An electrode 4 is embedded within the substrate part 2A of the susceptor. The electrode 4 may preferably be a plasma generating electrode for generating plasma by applying radio frequency voltage thereon.

The ring shaped part 6A of the present invention is provided so that it surrounds an outer periphery of the susceptor part 9A, and a semiconductor W is mounted on the dielectric layer 5 and ring shaped part 6A.

According to the present example, the ring shaped part is $\,^5$ extended to the outer edge of the susceptor part, and a protrusion is not provided at the outer edge of the susceptor part. Further, at the time of mounting the semiconductor W, the inner portion of the ring shaped part $\,^6$ A provides a mounting part $\,^6$ B present under the semiconductor W, and the outer $\,^1$ D portion is exposed to the outside of the semiconductor W in the outside of the mounting part $\,^6$ B. The non-mounting part $\,^6$ B surrounds the semiconductor W in a plan view.

According a heating apparatus 1B of FIG. 6, the ring 15 shaped part 6B is not extended to the outer edge of the susceptor part 9B (substrate 2B), and the ring shaped protrusion 2c is formed on the susceptor part 9B. The protrusion 2c surrounds the outer edge of the ring shaped part 6B in a plan view.

Further, according to a heating apparatus of FIG. 7, the ring shaped part 6C is not extended to the outer edge of the susceptor part 9C, and a ring shaped protrusion 2c is formed on the susceptor part 9C (substrate 2C). The protrusion 2c surrounds the outer edge of the ring shaped part 6C in a plan 25 view. Further, the non-mounting part 6a is composed of a ring shaped protrusion surrounding the outer edge of the semiconductor W

In prior arts, film thickness "T" of a formed film is distributed as schematically shown in FIG. **8**. That is, the film 30 thickness "T" was proved to be decreased as T1 substantially inside of the edge of the semiconductor W. On the contrary to this, by applying the ring shaped member made of the inventive ceramic material, the region where the film thickness is decreased is shifted toward the outer periphery side.

Besides in the case of the susceptor 11 according to a reference example as shown in FIG. 9, a heat generator 3 and a radio frequency electrode 4 are embedded within the susceptor 11. Then, the semiconductor W is mounted on the heating face 11a of the susceptor 11.

In the case that the whole of the susceptor 11 is formed of aluminum nitride, for example, the uniformity of film formation is also deteriorated in the outer periphery of the semiconductor.

Further, the whole of the susceptor 11 is composed of the 45 ceramics containing MgAlON as its main phase, it is proved that the uniformity of film formation is not improved in the outer periphery of the semiconductor, although high corrosion resistance can be obtained.

According to a preferred embodiment the inner part of the 50 ring shaped part provides a mounting part 6b positioned under the semiconductor W and the outer part provides a non-mounting part 6a positioned outside of the semiconductor W. It is preferred to apply such design for improving uniformity of film formation.

At this time, on the viewpoint of improving the uniformity of film formation a width "d" of the mounting part 6b may preferably be 0 mm or larger and more preferably be 10 mm or larger. Further, "di" may preferably be 50 mm or smaller and more preferably be 30 mm or smaller.

Further, on the viewpoint of improving the uniformity of film formation, a width "do" of the non-mounting part 6a may preferably be 0 mm or larger and more preferably be 15 mm or larger.

However, "di" is defined as a planar dimension between the 65 edge "E" of the semiconductor "W" and the inner edge of the mounting part 6b, and "do" is defined as a planar dimension

8

between the edge "E" of the semiconductor "W" and the outer edge of the non-mounting part 6a.

By providing an intermediate layer between the susceptor part and ring shaped part, it is possible to improve the bonding strength of the ring shaped part.

Further, according a preferred embodiment, the heating apparatus includes a heating member embedded within the susceptor part and an electrode of oscillating radio frequency wave embedded within the susceptor part.

Further, according to a preferred embodiment, it is provided a supporting part bonded to a back face of the susceptor. (Materials of Susceptor Part and Intermediate Layer)

According to the ceramic material, the linear thermal expansion coefficient of the magnesium-aluminum oxynitride forming the main phase in a range of 40 to 1000° C. is 6 to 7 ppm/K. Thus, by changing the ratios of the sub-components such as the MgO—AlN solid solution (12 to 14 ppm/K), spinel (8 to 9 ppm/K), and aluminum nitride (5 to 6 ppm/K), the linear thermal expansion coefficient can be controlled in a range of 5.5 to 10 ppm/K while maintaining the high corrosion resistance. However, since spinel or aluminum nitride is lower in the corrosion resistance than the magnesium-aluminum oxynitride or MgO-AlN solid solution, the contents thereof may be preferably smaller. By adjusting the thermal expansion as such, it is possible to match the thermal expansion with those of aluminum oxide, yttrium oxide and aluminum nitride used for members for semiconductor production systems. It is thereby possible to laminate or adhere the inventive ceramic material onto a prior material.

Specifically, the materials of the susceptor part include aluminum oxide, yttrium oxide, aluminum nitride, magnesium oxide, silicon nitride and spinel, and may particularly preferably be aluminum oxide, yttrium oxide or aluminum nitride

In particular, by forming the susceptor part with a material including aluminum nitride as its main phase, it is possible to maintain high thermal conductivity and easier to maintain the surface temperature of the corrosion resistant ceramic material uniform.

It is not particularly limited a method of bonding the susceptor part and ring shaped part. Both may be bonded with each other by, for example integrated sintering or an adhesive.

Such adhesive includes a silicon based adhesive, acrylic resin based adhesive and Al alloy adhesive.

According to a preferred embodiment, a difference between the thermal expansion coefficient of the susceptor part and that of the ring shaped part is 0.3 ppm/K or smaller. In this case, when both are bonded with each other at a high temperature (for example bonded by integrated sintering) or when the laminated body is repeatedly used at high and low temperatures, the risk of cracks and peeling can be avoided.

As described above, the susceptor part and ring shaped part may be bonded through the intermediate layer. It is thereby possible to further prevent the peeling of the ring shaped part due to the difference of the thermal expansion, for example. The intermediate layer is made a layer whose properties are between those of the susceptor part and the ring shaped part.

Specifically, the intermediate layer may be a composite ceramics obtained by sintering mixture of the ceramic mate60 rial described above and materials for the susceptor part.

Further, the intermediate layer may be composed of a plurality of layers and the compositions of the intermediate layers may be made different form each other to form a graded material layer.

(Materials of Heating Member and Electrode)

A wire conductor may be bent and processed to a wounded body, which may be used as the heating member, for example.

9

The wire diameter of the beating member is about 0.3 to 0.5 mm, and the winding diameter in the case of a coil shaped member is about 2 to 4 mm and the pitch is about 1 to 7 mm. The "winding diameter" referred to herein means an inner diameter of the coil forming the heating member.

As the shape of the heating member, in addition to the coil shape, various shapes may be applied such as ribbon, mesh, coil spring, sheet, printed electrode or the like. Further, in a part adjoining a through hole formed for supplying purge gas, lift pin or the like, the pattern of the heating member 12 may be optionally changed, for example, the heating member 12 may be turned away from the through hole. As the material of the heating member 12, it may be preferably used a conductive material with a high melting point such as molybdenum (Mo), tungsten (W), niobium (Nb) or the like.

The materials for the heating member may be used as materials for a radio frequency electrode for generating plasma over the susceptor and an electrode for an electrostatic chuck.

(Material of Supporting Part)

A material forming the supporting part (so called shaft) is not particularly limited and includes the followings.

The ceramic material of the present application, aluminum nitride, alumina, magnesium oxide, spinel

Preferably, the material of the supporting part is made the ceramic material described above. Even in this case, however, the ceramic materials forming the susceptor part and supporting part are not necessarily identical and may be of compositions different from each other.

(Halogen Based Corrosive Gas)

The inventive susceptor part is superior in the corrosion resistance against the halogen based corrosive gas and its plasma, and especially excellent in the corrosion resistance against the following halogen based corrosive gasses, the mixtures and plasmas.

NF₃, CF₄, ClF₃, Cl₂, BCl₃, HBr

EXAMPLES

Production and Evaluation of Ceramic Material

Preferred applications of the present invention will be described below. As MgO, ${\rm Al_2O_3}$ and AlN raw materials, they were used commercial products each having a purity of 99.9 mass percent or higher and an average particle size of 1 μ m 45 lower. Here, as about 1 percent of oxygen is inevitable in the AlN raw material, the above described purity is calculated after oxygen content is excluded from the impurity contents. Further, even in the case that it is used MgO material having a purity of 99 mass percent or higher, it could be produced a 50 ceramic material comparable with that produced by using MgO material having a purity of 99.9 mass percent or higher. 1. Ceramic Material

First, it will be described the ceramic material containing magnesium, aluminum, oxygen and nitrogen as the main 55 components (Experiments 1 to 19). Besides, the experiments 1 to 3 and 6 to 16 correspond to inventive examples and experiments 4, 5 and 17 to 19 correspond to comparative examples.

Experiments 1 to 3

(Formulation)

Raw materials of MgO, Al₂O₃ and AlN were weighed according to the mass % shown in table 1, and then wet-mixed using isopropyl alcohol as a solvent, nylon pot and alumina grinding stone with a diameter of 5 mm for 4 hours. After the

10

mixing, slurry was collected and dried in nitrogen flow at 110° C. Thereafter, the dried matter was passed through a sieve of 30 mesh to obtain formulated powder. Besides, the molar ratio of Mg/Al in the formulated powder was 1.2

(Molding)

The formulated powder was subjected to uniaxial press molding at a pressure of 200 kgf/cm² to produce a disk-shaped molded body having a diameter of about 35 mm and a thickness of about 10 mm, which was then contained in a graphite mold for sintering.

(Sintering)

The disk-shaped body was subjected to hot press sintering to obtain the ceramic material. The hot press sintering was performed at a pressure of 200 kgf/cm² and at a sintering temperature (the maximum temperature) shown in table 1, in Ar atmosphere until the completion of the sintering. The holding time at the sintering temperature was made 4 hours.

Experiment 4

The ceramic material was obtained according to the same procedure as the Experiment 1, except that raw materials of MgO and ${\rm Al_2O_3}$ were weighed according to the mass % shown in table 1.

Experiment 5

The ceramic material, was obtained according to the same procedure as the Experiment 1, except that the sintering temperature was set at 1650° C.

Experiments 6 to 12

The ceramic material was obtained according to the same procedure as the Experiment 1, except that raw materials of MgO, ${\rm Al_2O_3}$ and AlN were weighed according to the mass % shown in table 1 and that the sintering temperature was made that shown in table 1.

Experiments 13 to 19

The ceramic material was obtained according to the same procedure as the Experiment 1, except that raw materials of MgO) Al_2O_3 and AlN were weighed according to the mass % shown in table 1, that the sintering temperature was made that shown in table 1, and that the atmosphere during the sintering was made N_2 .

(Evaluation)

Each of the materials obtained in the experiments 1 to 19 was processed adapted for various evaluation procedures and the following evaluations were performed. The result of each evaluation was shown in table 1. Besides, according to each of the experiments 1 to 19, another sample having a diameter of 50 mm was also produced and it was proved that the samples provided evaluation results similar to those shown in table 1. (1) Bulk Density, Open Porosity

They were measured according to Archimedean method 60 using pure water as an medium.

(2) Evaluation of Crystal Phase

The material was ground using a mortar and its crystal phase was identified by an X-ray diffraction system. The condition of the measurement was made $\text{CuK}\alpha$, 40 kV, 40 mA, and 2θ =5 to 70° with a sealed tube type X-ray diffraction system ("D8-ADVANCE" supplied by Bruker AXS corporation) used.

(3) Etching Rate

The surface of each of the materials was polished to a mirror face, which was then subjected to corrosion resistance test using an ICP plasma corrosion resistance test system according to the following conditions. The step of a masked 5 face and exposed face was measured by a step gauge and the step value was divided by a test time period to calculate the etching rate of each material.

ICP: 800 W, Bias: 450 W, Introduced gas: NF3/O2/Ar=75/ 35/100 sccm, 0.05 Torr (6.67 Pa), Exposed time Period: 10 hr, Temperature of sample: Room temperature

(4) Constituent Atoms

The detection, identification and analysis of content of each constituent atom were performed using EPMA.

(5) Average Linear Thermal Expansion Coefficient (40 to 1000° C.)

The measurement was performed using a dilatometer (supplied by Bruker AXS corporation) under argon atmosphere. (6) Bending Strength

It was measured by bending strength test according to JIS-R1601.

(7) Measurement of Volume Resistivity

It was measured a method according to JIS-C2141 in air at room temperature (25° C.). The shape of a test sample was of 25 a diameter of 50 mm×(0.5 to 1 mm) and a main electrode with a diameter of 20 mm, a guard electrode with an inner diameter of 30 mm and an outer diameter of 40 mm and an applying electrode with a diameter of 40 mm were formed, while the electrodes were made of silver. A voltage of 2 kV was applied and it was read a current value at a time point 1 minute after the application of the voltage, and the current value was used to calculate a volume resistivity at room temperature. Further, as to the Experiments 7 and 19 (MgO sintered body), it was measured in vacuum (0.01 Pa or below) and at 600° C. The 35 shape of a test sample was of a diameter of 50 mm \times (0.5 to 1 mm), and a main electrode with a diameter of 20 mm, a guard electrode with an inner diameter of 30 mm and an outer diameter of 40 mm and an applying electrode with a diameter silver. A voltage of 500 V/mm was applied and it was read a current value at a time point 1 hour after the application of the voltage, and the current value was used to calculate a volume resistivity. Further, in values of the volume resistivity shown in table 1, "aEb" represents $a \times 10^b$, and, for example, "1E16" 45 represents 1×10¹⁶.

(Evaluation Results)

FIG. 1 shows an XRD analytical chart obtained in Experiment 1. Further, XRD analytical charts obtained in Experiments 2 and 3 were proved to be substantially same as that in 50 the Experiment 1, the charts were not shown. Further, table 1 shows crystal phases detected in all of the Experiments 1 to 19. As shown in FIG. 1, the XRD analytical charts of the ceramic materials according to the Experiments 1 to 3 include a plurality of unidentified peaks (\square in FIG. 1) and peaks (\bigcirc 55 in FIG. 1) corresponding with the MgO—AlN solid solution composed of magnesium oxide into which aluminum nitride is dissolved. The unidentified peaks "□" include peaks in a range of $2\theta = 47$ to 49 (47 to 50°) which do not correspond with those of magnesia, spinel and aluminum nitride, and it was 60 assumed to be magnesium-aluminum oxynitride. Besides, these peaks of the magnesium-aluminum oxynitride are not identical with those of MgAlON (or MAGALON) shown in reference 1 (J. Am. Ceram. Soc., 93 [2] pages 322 to 325 (2010)) and reference 2 (Japanese Patent Publication No. 65 2008-115065A). Generally, the MgAlON is known to be spinel with N component dissolved therein, and it is thus

12

considered that its crystal structure is different from that of the inventive magnesium-aluminum oxynitride.

The XRD peaks corresponding with (111) face, (200) face and (220) face of the MgO—AlN solid solution were shown in 20=36.9 to 39°, 42.9 to 44.8° and 62.3 to 65.2°, respectively, which are between the peaks of cubic phase of magnesium oxide and cubic phase of aluminum nitride. FIG. 2 shows EPMA element mapping images obtained in the Experiment 1. As shown in FIG. 2, it was proved that the material of the Experiment 1 is composed of the two phases of the magnesium-aluminum oxynitride ("x" part) shown in FIG. 1 and the MgO—AlN solid solution ("y" part) and that the former forms the main phase. Here, the main phase means a component occupying 50 percent or more in volume ratio, and sub-phase means a phase other than the main phase and whose XRD phase is identified. A ratio of area at an observed cross section is considered to reflect the volume ratio, so that the main phase is defined as an area having a area ratio of 50 percent or more in an EPMA element mapping image and the 20 sub phase is defined as an area other than the main phase. As shown in FIG. 2, the ratio of area of the magnesium-aluminum oxynitride was about 66 percent and the magnesiumaluminum oxynitride was proved to be the main phase. Besides, "x" part is identified as the magnesium-aluminum oxynitride, because it was composed of four components of Mg, Al, O and N, and the contents of Mg and N were higher than, Al content was close to and O content was lower than those in spinel material ("z" part) obtained in the Experiment 4. That is, the magnesium-aluminum oxynitride is characteristic in containing more Mg than spinel. Similar analysis was performed for the other Experiments and, for example, it was proved that the ratio of area of the magnesium-aluminum oxynitride was about 87 percent to constitute the main phase in the Experiment 10. Further, although the judgment of the main and sub phases was performed by the EPMA element mapping according to the present example, another method may be applied as far as it is possible to distinguish the volume ratio of each phase.

Besides, an EPMA element mapping image is divided into of 40 mm were formed while the electrodes were made of 40 colors of red, orange, yellow, yellowish green, green, blue and indigo blue depending on the contents, so that red, indigo blue and black correspond to the highest content, the lowest content and zero, respectively. However, as FIG. 2 is shown in monochrome, the following description is given for original colors in FIG. 2 below. According to the Experiment 1, "x" and "y" parts were colored in yellowish green and red for Mg, respectively, "x" and "y" parts were colored in orange and blue for Al, respectively, "x" and "y" parts were colored in orange and blue for N, respectively, and "x" and "y" parts were colored in aqua blue and orange for O, respectively. According to the Experiment 4, the whole area ("z" part) was colored in green for Mg, the whole area was colored in orange for Al, the whole area was colored in black for N, and the whole area was colored in red for O.

> Further, according to the Experiment 4, as aluminum nitride was not used, the above described magnesium-aluminum oxynitride was not generated, so that the ceramic material contained, as the main phase, spinel (MgAl₂O₄). According to the Experiment 5, as the sintering temperature was low, the above described magnesium-aluminum oxynitride was not generated, so that the ceramic material contained magnesium oxide as the main phase and spinel and aluminum nitride as the sub phases. FIGS. 3 and 4 show XRD analytical charts of the Experiments 7 and 10, respectively. As can be seen from FIGS. 3 and 4, it was mainly detected the magnesiumaluminum oxynitride (in the figures) having peaks in a range of 2θ =47 to 49° (or 47 to 50°) in the Experiments 7 and

10, and spinel (Δ in the figure) and MgO—AlN solid solution (\bigcirc in the figure) were found as the sub phases in the Experiments 7 and 10, respectively. Besides, the XRD analytical charts were omitted as to the Experiments 6, 8, 9, 11 and 12 and the main and sub phases are shown in table 1.

Then, the etching rates of the ceramic materials of the Experiments 1 to 3 and 6 to 8 were as low as 80 percent or lower, and the etching rates in the Experiments 9 to 12 were as low as 90 percent or lower, of that in the Experiment 4. It was thus proved that the corrosion resistance was very high. As 10 that of the Experiment 5 includes much amounts of spinel and aluminum nitride with lower corrosion resistance, the etching rate was proved to be higher. Besides, the etching rate of alumina shown in the Experiment 18 was higher than that of the ceramic material (spinel) of the Experiment 4. The 15 ceramic materials of the Experiments 1 to 3 and 6 to 8 have sufficiently high bending strengths and volume resistivities.

It was further measured an etching rate at high temperature. Here, for the ceramic materials of the Experiments 2 and 10, the surface of each of the materials was polished to a mirror 20 face and subjected to corrosion resistance test at high temperature under the following conditions using an ICP plasma corrosion resistance test system. Then, a step between the masked face and exposed face measured by a step gauge is divided by a test time period to calculate the etching rate of 25 each material. As a result, the etching rate of each material was $\frac{1}{3}$ or lower of that of alumina, $\frac{1}{5}$ or lower of that of aluminum nitride, and comparable with that of spinel, and the corrosion resistance against plasma at high temperature was also good.

14

ICP: 800 W, Bias: none, Introduced gas: $NF_3/Ar=300/300$ sccm, 0.1 Torr, Exposed time: 5 h, Temperature of sample: 650° C.

According to the ceramic materials of the Experiments 12 to 16, the etching rate (212 to 270 nm/h) was very close to that of spinel of the Experiment 4, and the linear thermal expansion coefficient (5.8 to 6.9 ppm/K) was lower than that of spinel. That is, the ceramic materials of the Experiments 12 to 16 were proved to have corrosion resistance comparable with that of spinel while providing a lower linear thermal expansion coefficient, so that they are useful for materials of an electrostatic chuck and heater, especially heater. Besides, although raw material composition of the Experiment 17 was made identical with that of the Experiment 6, the sintering temperature was made lower. Consequently, its main phase was not the magnesium-aluminum oxynitride but spinel, so that its corrosion resistance was lowered and linear thermal expansion coefficient was higher compared with those of the Experiment 6. Further, the ceramic materials of the Experiments 12 to 16 have sufficiently high bending strength and volume resistivity.

Further, the volume resistivities at 600° C. in the Experiments 7 and 19 were 5×10^{8} Ω cm and 2×10^{12} Ω cm, respectively. It was proved that the ceramic material having, as the main phase, the magnesium-aluminum oxynitride phase having an XRD peak at least in a range of 20=47 to 49° (or 47 to 50°) has an electrical resistance lower than that of MgO.

As described above, it is predicted that the ceramic materials produced in the Experiments 1 to 3 and 6 to 16 also have electrical resistances lower than that of magnesium oxide.

TABLE 1

	RelationShip With invention	First Component (MgO) (mass %)	Second Component (Al2O3) (mass %)	Third component (AlN) (mass %)	Mg/Al molar ratio	Sintering Temperature (° C.)	Bulk Density (g/cm3)	Open porosity (%)
Exp. 1	Inventive	51.6	21.9	26.5	1.2	1850	3.40	0.04
Exp. 2	Example	51.6	21.9	26.5	1.2	1800	3.37	0.03
Exp. 3		51.6	21.9	26.5	1.2	1750	3.38	0.03
Exp. 4	Comparative	28.2	71.8	_	0.5	1850	3.57	0.01
Exp. 5	Example	51.6	21.9	26.5	1.2	1650	3.47	0.01
Exp. 6	Inventive	33.3	30.2	36.4	0.7	1775	3.28	0.02
Exp. 7	Example	27.6	32.8	39.6	0.4	1800	3.30	0.02
Exp. 8		33.9	22.3	43.8	0.6	1800	3.28	0.01
Exp. 9		28.1	24.3	47.7	0.4	1850	3.25	0.02
Exp. 10		28.1	24.3	47.7	0.4	1800	3.26	0.02
Exp. 11		28.1	24.3	47.7	0.4	1750	3.26	0.03
Exp. 12		18.6	27.5	54.0	0.3	1800	3.33	0.02
Exp. 13		9.6	11.0	79.4	0.1	1800	3.27	0.01
Exp. 14		9.6	11.0	79.4	0.1	1850	3.27	0.08
Exp. 15		24.2	25.5	50.2	0.4	1800	3.27	0.12
Exp. 16		9.4	19.4	71.2	0.1	1900	3.27	0.02
Exp. 17	Comparative	33.3	30.2	36.4	0.7	1700	3.28	0.03
Exp. 18	Example	0	100	0	_	1700	3.94	0.01
Exp. 19	-	100	0	0	_	1500	3.57	0.30

		Crystal phase	NF ₃ Etching Rate	Linear thermal expansion coefficient @40~1000° C.	Strength	Volume Resistivity @25° C.	Volume Resistivity @600° C.
	Main phase	Sub phase	(nm/h)	(ppm/K)	(MPa)	$(\Omega \cdot cm)$	$(\Omega \cdot cm)$
Exp. 1	Mg—Al—O—N*	MgO—AlNss**	176	9.5	240	>1E16	
Exp. 2	Mg—Al—O—N*	MgO—AlNss**	177	9.3	291	>1E16	_
Exp. 3	Mg—Al—O—N*	MgO—AlNss**	179	9.6	320	>1E16	_
Exp. 4	MgAl ₂ O ₄	None	244	8.6	168	>1E16	_
Exp. 5	MgO	MgAl ₂ O ₄ , AlN	224	>10	350	>1E16	_
Exp. 6	Mg—Al—O—N*	MgO—AlNss** MgAl ₂ O ₄	181	7.7	236	>1E16	_
Exp. 7	Mg—Al—O—N*	MgAl ₂ O ₄	191	7.3	242	>1E16	5E8
Exp. 8	Mg—Al—O—N*	MgO—AlNss**	195	7.6	272	>1E16	_
Exp. 9	Mg—Al—O—N*	MgO—AlNss**	210	7.1	233	>1E16	_
Exp. 10	Mo—Al—O—N*	MgO—AlNss**	209	7.1	257	>1E16	_

TABLE 1-continued

Exp. 12 Exp. 13 Exp. 14 Exp. 15 Exp. 16 Exp. 17 Exp. 18	2 3	AlN, MgAl ₂ O ₄ AlN, MgAl ₂ O ₄ AlN MgAl ₂ O ₄ MgAl ₂ O ₄	211 219 270 255 212 230 256 623	7.1 6.9 5.8 6.0 6.9 6.2 8.1 8.0	265 387 304 304 283 320 400 290	>1E16 >1E16 >1E16 >1E16 >1E16 >1E16 		
Exp. 19	2 3	—	—	- 0.0	240	— >1E16	 2E12	

^{*}Mg—Al—O—N: Magnesium-aluminum oxynitride (XRD: peaks in $2\theta = 47-49^{\circ}$)

2. Laminated Sintering

Next, it will be described a laminated body provided by laminated sintering of first and second structural bodies utilizing the ceramic material described above (Experiments 20 to 26). Besides, the Experiments 20 to 24 correspond to the inventive examples and the Experiments 25 and 26 correspond to comparative examples.

Experiments 20 and 21

The ceramic materials of the Experiments 4 and 6 to 12 25 have average linear thermal expansion coefficients of 7 to 9 ppm/K in 40 to 1000° C. According to the Experiments 20 and 21, as shown table 2, the first structural body was made of the ceramic material of the Experiment 10, and the second structural body was made of aluminum nitride. The first and sec- 30 ond structural bodies were laminated and molded to a provide a sample having a diameter of 50 mm, which was subjected to laminated sintering. As the aluminum nitride, it was used aluminum nitride to which 5 mass percent of yttrium oxide was added as a sintering aid in outer addition (that is, 5 mass 35 parts of Y₂O₃ was added to 100 mass parts of AlN, referred to as AIN [1]), or aluminum nitride to which 50 mass percent of yttrium oxide was added (That is, 50 mass parts of Y₂O₃ was added to 100 mass parts of AlN, referred o as AlN [2]). As raw materials of aluminum nitride and yttrium oxide, it was used 40 commercial products having a purity of 99.9 mass percent or higher and an average particle size of 1 µm or smaller. Here, as AlN material inevitably contains about 1 mass percent of oxygen, the purity was calculated after oxygen is removed from impurity elements. Further, since the average linear 45 thermal expansion coefficient in 40 to 1000° C. was 5.7 ppm/K in AlN [1] and 6.2 ppm/K in AlN[2], it is provided a difference of thermal expansion between the first and second structural bodies. Therefore, between the first and second structural bodies, it was provided an intermediate layer in 50 which the raw materials of AlN[1] or AlN[2] and raw materials of the Experiment 10 were mixed. The difference of thermal expansion can be relaxed by the intermediate layer. In the Experiment 20 using AlN[1], the intermediate layer was composed of three layers having mass ratios of 25:75, 50:50 55 and 75:25, respectively, and in the Experiment 21 using AlN [2], the intermediate layer was composed of two layers having mass ratios or 40:60 and 60:40, respectively. It will be described steps of formulation, molding and sintering below in detail.

(Formulation)

As the raw material of the first structural body, it was used formulated powder produced according to the similar procedure as the Experiment 10 described above. The raw material of the second structural body was produced as described 65 below with aluminum nitride as the main phase. In AlN [1] of the second structural body, first, aluminum nitride powder

 $_{15}$ and yttrium oxide powder were weighed in a ratio of $100\,\mathrm{mass}$ percent and 5.0 mass percent, and then wet-mixed using isopropyl alcohol as a solvent, a nylon pot and nylon agitating media for 4 hours. After the mixing, slurry was collected and dried in nitrogen flow at 110° C. Thereafter, it was passed through a sieve of 30 mesh to produce formulated powder. Further, the thus obtained formulated powder was thermally treated at 450° C. for 5 hours or longer in air atmosphere to fire and remove carbon contents included during the wet mixing. The intermediate layer of the laminated body using AlN[1] was formulated as follows. First, the formulated powders of the Experiment 10 and aluminum nitride described above were weighed in mass ratios of 75:25 (intermediate layer 1), 50:50 (intermediate layer 2), and 25:75 (intermediate layer 3), and then wet-mixed using isopropyl alcohol as a solvent, a nylon pot and nylon agitating media for 4 hours. After the mixing, the slurry was collected and then dried in nitrogen flow at 110° C. Thereafter, it was passed through a sieve of 30 mesh to provide formulated powder. AlN[2] of the second structural body was produced according to the same procedure as AlN[1], except that the aluminum nitride powder and yttrium powder were mixed in a ratio of 100 mass percent and 50 mass percent, respectively. Further, the intermediate layer of the laminated body using AlN[2] was formulated according to the same procedure as AlN[1], except that the formulated powder of the Experiment 10 and that of the aluminum nitride described above were mixed in mass ratios of 60:40 (intermediate layer 1) and 40:60 (intermediate layer 2), respectively.

(Molding)

First, the aluminum nitride formulated powder as the raw material of the second structural body was filled in a metal mold having a diameter of 50 mm, and molded by uniaxial pressure molding at a pressure of 200 kgf/cm². The aluminum nitride molded body was not drawn out of the mold, and formulated powders of the intermediate layers were filled thereon in the descending order of aluminum nitride contents, while a pressure of 200 kgf/cm² was applied after each of the filling procedure by uniaxial pressure molding. Lastly, the formulated powder of the Experiment 10 as the raw material of the first structural body was filled and then pressure molded at a pressure of 200 kgf/cm². As to the laminated body using AlN[1], it was prepared a disk-shaped molded body having a total thickness of 23 mm and including an aluminum nitride 60 layer of 10 mm as the second structural body, three intermediate layers each having a thickness of 1 mm and the layer of the Experiment 10 as the first structural body of 10 mm. Further, as to the laminated body using AlN[2], it was prepared a disk-shaped molded body having a total thickness of 22 mm and including an aluminum nitride layer of 10 mm as the second structural body, two intermediate layers each having a thickness of 1 mm and the layer of the Experiment 10 as

^{**}MgO-AlNss: MgO-AlN solid solution

^{[--:} not measured

the first structural body. These laminated and disk-shaped bodies were contained in a graphite mold for sintering. (Sintering)

The disk-shaped molded body contained in the graphite mold for sintering was subjected to hot press sintering to 5 obtain a ceramic material by integrated sintering. The hot press sintering was performed at a pressure of 200 kgf/cm², a sintering temperature of 1800° C. and in Ar atmosphere until the completion of the sintering. The holding time period at the sintering temperature was made 4 hours. Besides, as to the 10 Experiments 20 and 21, the sintering was also performed at a sintering temperature of 1750° C. (Experiments 20-1 and 21-1).

According to the sintered body obtained in the production method described above, in both of the laminated bodies using AlN[1] (Experiments 20, 20-1) and using AlN[2] (experiments 21 and 21-1), the upper part of the sintered body was composed of the magnesium-aluminum oxynitride with high corrosion resistance, the lower part was composed of a sintered body mainly composed of aluminum nitride with 20 high thermal conductivity and an intermediate layer was provided between them. In the intermediate layer, the Al content was inclined so that the Al content is made higher from the first structural body toward the second structural body. Cracks, fractures or the like were not observed at interfaces of the layers of the sintered bodies. It is considered that thermal stress during the sintering could be avoided by providing the intermediate layer between the first and second structural bodies. Further, by controlling the thermal expansion coefficient of aluminum nitride as the base material, it is possible to 30 reduce thermal stress generated between the base material and the magnesium aluminum oxynitride and thereby to reduce the thickness of the intermediate layer.

Experiments 22 to 24

According to the Experiment 22, as shown in table 2, a laminated body was obtained according to the same procedure as the Experiment 20, except that the first structural body was made of the ceramic material of the Experiment 6, the 40 second structural body was made of aluminum nitride and the laminated sintering was performed without the intermediate

18

layer in N₂ atmosphere. According to the Experiment 23, as shown in table 2, a laminated body was obtained according to the same procedure as the Experiment 20, except that the first structural body was made of the ceramic material of the Experiment 6, the second structural body was made of yttrium oxide and the laminated sintering was performed without the intermediate layer in N₂ atmosphere. According to the Experiment 24, as shown in table 2, a laminated body was obtained according to the same procedure as the Experiment 20, except that the first structural body was made of the ceramic material of the Experiment 13, the second structural body was made of aluminum nitride AlN[1] and the laminated sintering was performed without the intermediate layer in N₂ atmosphere. In all of the Experiments 22 to 24, cracks and fractures were not found at the interfaces between the layers. Further, according to each of the Experiments 22 to 24, the difference of the linear thermal expansion coefficients of the first and second structural bodies was as low as 0.3 ppm/K or lower, so that it was possible to prevent the generation of cracks and fractures without providing the intermediate layer. Besides, according to the Experiments 22 to 24, it may be provided the intermediate layer as the Experiments 20, 20-1, 21 and 21-1.

Experiments 25, 26

According to the Experiment 25, as shown in table 2, a laminated body was obtained according to the same procedure as the Experiment 20, except that the first structural body was composed of alumina, the second structural body was composed of aluminum nitride (AlN[1]), and the laminated sintering was performed in N₂ atmosphere. According to the Experiment 26, as shown in table 2, a laminated body was obtained according to the same procedure as the Experiment 20, except that the first structural body was composed of spinel, the second structural body was composed of aluminum nitride (AlN[1]), and the laminated sintering was performed in N₂ atmosphere. According to each of the Experiments 25 and 26, cracks were generated at the interface between the layers. This is because the difference between the thermal expansion coefficients of the first and second structural bodies is too large so that it could not prevent the crack formation due to the difference of thermal expansion in spite of providing the intermediate layer.

TABLE 2

					IADLI	۷4			
				Seco	nd structural body	_			
		First s	tructural body	_	Linear				
			Linear thermal expansion		thermal expansion coefficient		Intermediate layer	_	
	Relationship with invention	Material	coefficient @40~1000° C. (ppm/K)	Material	@40~1000° C. (ppm/ K)	Presence Or Absence	Structure	Sintering tem. ° C.	Presence or absence of cracks
Exp. 20	Inventive	Exp. 10	7.1	AlN (AlN[1])	5.7	Present	Three layers(first and second structural bodies in layers(mass ratio) = 75/25, 50/50, 25/75)	1800	Present
Exp. 20-1		Exp. 10	7.1	AlN (AlN[1])	5.7	Present	Three layers(first and second structural bodies in layers(mass ratio) = 75/25, 50/50, 25/75)	1750	Absent
Exp. 21		Exp. 10	7.1	AlN (AlN[2])	6.2	Present	Two layers(first and second structural bodies in layers(mass ratio) = 60/40, 40/60)	1800	Absent
Exp. 21-1		Exp. 10	7.1	AlN (AlN[2])	6.2	Present	Three layers(first and second structural bodies in	1750	Absent

TABLE 2-continued

				Seco	nd structural body	_			
		First st	ructural body	_	Linear				
			Linear thermal expansion		thermal expansion coefficient		Intermediate layer	_	
	Relationship with invention	Material	coefficient @40~1000° C. (ppm/K)	Material	@40~1000° C. (ppm/ K)	Presence Or Absence	Structure	Sintering tem. ° C.	Presence or absence of cracks
							layers(mass ratio) = 75/25, 50/50, 25/75)		
Exp. 22		Exp. 6	7.7	Al_2O_3	8.0	Absent		1800	Absent
Exp. 23		Exp. 6	7.7	Y_2O_3	7.9	Absent	_	1800	Absent
Exp. 24		Exp. 13	5.8	AlN (AlN[1])	5.7	Absent	_	1800	Absent
Exp. 25	Comparative	Alumina	8.0	AlN (AlN[1])	5.7	Present	Three layers(first and second structural bodies in layers(mass ratio) = 75/25, 50/50, 25/75)	1800	Present
Exp. 26		Spinel	8.6	AlN (AlN[1])	5.7	Present	Three layers(first and second structural bodies in layers(mass ratio) = 75/25, 50/50, 25/75)	1800	Present

(Production and Evaluation of Heating Apparatus)

It will be described a method of producing a ceramic heater according to an embodiment of the present invention, referring to FIGS. 5 to 9.

As shown in table 3, it was produced heating apparatuses shown in FIGS. 5, 6, 7 and 9.

First, in the Experiment Nos. 1-C1, C2, C3, C4, C5, 2-C1, 35 C2, C3, C4 and C5, the ring shaped part was formed of the inventive ceramic material and the susceptor part was made of aluminum nitride, specifically, according to the following procedure.

(a) It was prepared materials of a ring shaped part. As to 40 material for forming the ring shaped part, specifically, raw materials of MgO, $\mathrm{Al_2O_3}$ and AlN were weighed, and wetmixed using isopropyl alcohol as a solvent, a nylon pot, and alumina agitating media with a diameter of 5 mm for 4 hours. The mixing is performed using, for example, a large scale ball 45 mill with its container itself rotated, which is called trommel. After the mixing, the slurry was collected and dried in nitrogen flow at $^{110^\circ}$ C. It was then passed through a sieve of 30 mesh to produce formulated powder. Besides, a molar ratio of Mg/Al in the formulated powder was 1.2.

On the other hand, as to the susceptor part, specifically, aluminum nitride ceramic powder is mixed with a binder for molding. The time period of mixing by trammel was about 30 minutes, for example. Thereafter, granulation was performed by means of a granulating system such as a spray drier (SD) 55 to obtain granulated powder.

- (b) Then, the formulated powder for the susceptor part was molded by a mechanical press under uniaxial pressure, and the granulated powder for the ring shaped part was then added thereto and molded by the same mechanical press under 60 uniaxial pressure to produce a preliminary molded body. Then, a heating member and electrical supply terminal part are embedded inside of the preliminary molded body, which is then molded by the mechanical press again.
- (c) The laminated molded body produced as described above 65 was contained in a sintering furnace such as of hot press molding and then subjected to integrated sintering. According

to hot press molding, raw material powder or molded body is filled or inserted in a carbon jig and then sintered at uniaxial pressure of 30 to 50 MPa. This is suitable for sintering of ceramic materials which are difficult to densify by conventional sintering at ambient pressure. The sintering conditions are under sintering temperature of 1600 to 2000° C., a pressure of 100 to 300 kgf/cm² and sintering time period of 2 to 5 hours

- (d) Further, the shaft was provided on the side of the back face of the susceptor. The shaft is produced separately from the plate. First, materials of the shaft are prepared. Specifically, formulated powder is prepared according to the same procedure as that of the susceptor part. The thus prepared formulated powder was contained in a sintering furnace such as a cold isostatic press (CIP) and sintered to produce a molded body. CIP is a method of subjecting an uniaxial molded body obtained by metal mold method to isostatic press molding so as to improve the density of and to prevent the ununiformity of the molded body. It is possible to directly fill the raw materials in a rubber mold without performing the molding using a metal mold and to perform CIP processing to obtain a molded body. The thus obtained molded body of shaft is sintered in an ambient pressure sintering furnace or the like. The sintering conditions include a sintering temperature of 1600 to 2000° C., a pressure of 1 to 30 kg/cm² and a sintering time period of 1 to 5 hours. Then, the shaft is processed in its outer periphery or by lapping. The plate and shaft obtained according to the procedure as described above are bonded with each other in a sintering furnace by direct bonding process. The sintering conditions include a sintering temperature of 1400 to 2000° C., a pressure of 100 to 300 kg/cm² and a sintering time period of 2 to 5 hours.
- (e) A region where the ring shaped member was variously changed as shown in table 3. However, the region where the ring shaped member was provided was variously changed as a distance (R) from the center of the susceptor.

However, according to the Experiment Nos. 1-C1, C2 and C5, as shown in FIG. 5, the ring shaped part is extended to the outer edge of the susceptor part. According to the Experiment

Nos. 1-C3 and C4, as shown in FIG. 6, the ring shaped protrusion 2c was formed in an outer periphery of the susceptor part. According to the Experiment Nos. 2-C3 and C4, as shown in FIG. 7, a ring shaped protrusion 6a was formed in an outer peripheral portion of the ring shaped part and a ring shaped protrusion 2c was formed in an outer peripheral portion of the susceptor part. According to the Experiment Nos. 2-C1, C2 and C5, as shown in FIG. 7, a ring shaped protrusion 6a was formed in an outer peripheral portion of the ring shaped part and the ring shaped part is extended to the outer edge of the susceptor part and the ring shaped protrusion 2cwas not formed in an outer peripheral portion of the susceptor part.

Experiment Nos. 1-A and 2A

ceptor shown in FIG. 9. According the Experiment No. 2-A, it is produced a susceptor shown in FIG. 7, except that the ring **Evaluated Properties:**

Temperature uniformity on a wafer, amount of particles and surface roughness before and after the corrosion resistance test described above.

Film Formation Range in an Outer Peripheral Portion of a Wafer

The ceramic heater of each example was set in a CVD. A silicon wafer was mounted on the ceramic heater and heated at 550° C. to perform CVD film formation of an insulating film. It was measured thicknesses of the film in the outer peripheral portion of the wafer of the thus formed film to calculate a difference (range) of the maximum and minimum values. Besides, the heating of the heater at the temperature was controlled by a thermocouple not shown fitted to a back face of the ceramic plate. The range of film formation in the outer peripheral portion is, specifically, defined as a difference between the maximum and minimum values in a range of R140 to 147 mm.

The material containing MgAlON as the main phase used According the Experiment No. 1-A, it is produced a sus- 20 in the examples in the following table was of a composition of the Experiment 12 shown in the example described above

TABLE 3

			Range where		,	Film formation range in outer portion of wafer (Å)			
Ex. No.	Embodiment	Material of Susceptor part/ Material of ring shaped part	ring shaped part is positioned (mm)	di (mm)	do (mm)	Before corrosion resistance test	After 50 RFhours	After 100 RF hours	
1-A	FIG. 9	Al N	_	_	_	160	250	330	
1-B	FIG. 9	Mg—Al—O—N	_	_	_	155	160	160	
1-C1	FIG. 5	AlN/Mg—Al—O—N	R100~R165	50	15	100	100	100	
1-C2	FIG. 5	AlN/Mg—Al—O—N	R120~R165	30	15	50	45	50	
1-C3	FIG. 6	AlN/Mg—Al—O—N	R140~R150	10	0	110	110	105	
1-C4	FIG. 6	AlN/Mg—Al—O—N	R140~R155	10	10	50	50	45	
1-C5	FIG. 5	AlN/Mg—Al—O—N	R140~R165	10	15	50	45	45	
2-A	FIG. 7	Al N	_	_	_	180	270	340	
2-B	FIG. 7	Mg—Al—O—N	_	_	_	160	160	165	
2-C1	FIG. 7	AlN/Mg—Al—O—N	R100~R165	50	15	100	110	110	
2-C2	FIG. 7	AlN/Mg—Al—O—N	R120~R165	30	15	55	50	50	
2-C3	FIG. 7	AlN/Mg—Al—O—N	R140~R150	10	0	105	110	110	
2-C4	FIG. 7	AlN/Mg—Al—O—N	R140~R155	10	10	50	50	55	
2-C5	FIG. 7	AlN/Mg—Al—O—N	R140~R165	10	15	50	45	50	

shaped part is extended to the outer edge of the susceptor part 45 and the ring shaped protrusion 2c is not formed in an outer peripheral portion of the susceptor part. The material of the susceptor part is made only aluminum nitride, and the susceptor part was produced as the Experiment Nos. 1-C and 2-C.

Experiment Nos. 1-B, 2-B

According to the Experiment No. 1-B, it was produced the susceptor shown in FIG. 9. According to the Experiment No. 55 2-B, it was produced the susceptor shown in FIG. 7, except that the ring shaped part is extended to the outer edge of the susceptor part and the ring shaped protrusion 2c was not formed in an outer peripheral portion of the susceptor part. The material of the susceptor part is made only aluminum 60 nitride, and the susceptor part was produced as the Experiment Nos. 1-C and 2-C.

(Test Condition)

Corrosion Resistance Test:

ICP: 800 W, Bias: 450 W, Supplied gas: NF₃/O₂/Ar=75/ 65 35/100 sccm, 0.05 Torr, Exposed time period: 100 hours, Temperature of sample 600° C.

According to the Experiment Nos. 1-C and 2-C of the inventive embodiments, the film formation range before the corrosion resistance test was small and the film formation range after the corrosion resistance test was maintained at a 50 considerably small value.

According to the Experiment Nos. 1-A and 2-A, the susceptor was composed of aluminum nitride, and the film formation range was proved to be large before and after the corrosion resistance test. According to the Experiment Nos. 1-B and 2-B, the susceptor was composed only of the ceramic material containing MgAlON as the main phase, and the corrosion resistance was high and the film formation range was not deteriorated even after the corrosion resistance test. The film formation range before the corrosion resistance test was, however, proved to be inferior than those in the Experiments 1-C and 2-C.

These actions and effects are epoch-making in the field of semiconductor treating system, and it can be understood that various applications are expected in the industries.

Although specific embodiments of the present invention have been described above, the invention is not to be limited

to these specific embodiments and can be performed with various changes and modifications, without departing from claims

The invention claimed is:

- 1. A heating apparatus comprising a susceptor and a ring shaped part, said susceptor comprising a substrate and a dielectric layer provided on an upper face of said substrate and having a heating face of heating a semiconductor, and said ring shaped part being provided on said upper face of said substrate and in an outer periphery of said dielectric layer;
 - wherein said ring shaped part comprises a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components;
 - wherein said ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase 15 exhibiting an XRD peak at least in 2θ =47 to 50° taken by using CuK α ray; and
 - wherein said ceramic material comprises a sub phase comprising a crystal phase of MgO—AlN solid solution wherein aluminum nitride is dissolved into magnesium 20 oxide.
- 2. The heating apparatus of claim 1, wherein said susceptor comprises an outer protrusion surrounding an outer edge of said ring shaped part.
- 3. The heating apparatus of claim 1, wherein said ring 25 shaped part comprises a mounting part mounting an outer part of said semiconductor.
- **4**. The heating apparatus of claim **3**, wherein said ring shaped part comprises a non-mounting part provided in the outside of said mounting part and surrounds said semicon- 30 ductor.
- 5. The heating apparatus of claim 4, wherein said non-mounting part comprises a ring shaped protrusion surrounding an outer edge of said semiconductor.
- **6**. The heating apparatus of claim **1**, wherein said susceptor 35 and said ring shaped part are formed by integrated sintering.
- 7. The heating apparatus of claim 1, further comprising an intermediate layer provided between said susceptor and said ring shaped part.
- **8**. The heating apparatus of claim **1**, further comprising a 40 heating member embedded within said susceptor and an electrode of generating radio frequency wave and embedded within said susceptor.
- **9**. The heating apparatus of claim **1**, further comprising a supporting part bonded to a back face of said susceptor.
- 10. The heating apparatus of claim 1, wherein said 2θ is 47 to 49° .

- 11. The heating apparatus of claim 1, wherein said MgO—AlN solid solution has XRD peaks at (200) and (220) faces taken by using CuK α ray in ranges of 20=42.9 to 44.8° and 62.3 to 65.2°, respectively, which are between peaks of cubic phase of magnesium oxide and cubic phase of aluminum nitride, respectively.
- 12. The heating apparatus of claim 11, wherein said MgO—AlN solid solution has an XRD peak at (111) face taken by using CuK α ray in a range of 2θ =36.9 to 39°, which is between peaks of cubic phase of magnesium oxide and cubic phase of aluminum nitride.
- 13. The heating apparatus of claim 1, wherein said susceptor comprises a ceramics comprising aluminum nitride, yttrium oxide or aluminum oxide as a main phase.
- **14**. A ring shaped part mounted on an upper face of a substrate and provided in an outer periphery of a dielectric layer having a heating face of heating a semiconductor,
 - wherein said ring shaped part comprises a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components;
 - wherein said ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ =47 to 50° taken by using CuK α ray; and
 - wherein said ceramic material comprises a sub phase comprising a crystal phase of MgO—AlN solid solution wherein aluminum nitride is dissolved into magnesium oxide.
- **15**. The ring shaped part of claim **14**, further comprising a ring shaped protrusion surrounding an outer edge of said semiconductor.
- **16.** The ring shaped part of claim **14**, wherein said 2θ is 47 to 49° .
- 17. The ring shaped part of claim 14, wherein said MgO—AlN solid solution has XRD peaks at (200) and (220) faces taken by using CuK α ray in ranges of 20=42.9 to 44.8° and 62.3 to 65.2°, respectively, which are between peaks of cubic phase of magnesium oxide and cubic phase of aluminum nitride, respectively.
- 18. The ring shaped part of claim 17, wherein said MgO—AlN solid solution has an XRD peak at (111) face taken by using CuK α ray in a range of 2θ =36.9 to 39°, which is between peaks of cubic phase of magnesium oxide and cubic phase of aluminum nitride.

* * * * *